enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.

  3. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  4. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    Symbol Meaning SI unit of measure magnetic vector potential: tesla meter (T⋅m) : area: square meter (m 2) : amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2)

  5. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    Volumetric flow rate is defined by the limit [3] = ˙ = =, that is, the flow of volume of fluid V through a surface per unit time t.. Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity.

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Metre per second squared - Wikipedia

    en.wikipedia.org/wiki/Metre_per_second_squared

    When an object experiences a constant acceleration of one metre per second squared (1 m/s 2) from a state of rest, it achieves the speed of 5 m/s after 5 seconds and 10 m/s after 10 seconds.

  9. Time-variation of fundamental constants - Wikipedia

    en.wikipedia.org/wiki/Time-variation_of...

    The immutability of these fundamental constants is an important cornerstone of the laws of physics as currently known; the postulate of the time-independence of physical laws is tied to that of the conservation of energy (Noether's theorem), so that the discovery of any variation would imply the discovery of a previously unknown law of force. [3]