Search results
Results from the WOW.Com Content Network
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
A tutorial by Ananth Ranganathan; K. Madsen, H. B. Nielsen, O. Tingleff, Methods for Non-Linear Least Squares Problems (nonlinear least-squares tutorial; L-M code: analytic Jacobian secant) T. Strutz: Data Fitting and Uncertainty (A practical introduction to weighted least squares and beyond). 2nd edition, Springer Vieweg, 2016, ISBN 978-3-658 ...
Top: Raw data and model. Bottom: Evolution of the normalised sum of the squares of the errors. The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function.
The figure on the right shows a plot of this function: a line giving the predicted ^ versus x, with the original values of y shown as red dots. The data at the extremes of x indicates that the relationship between y and x may be non-linear (look at the red dots relative to the regression line at low and high values of x). We thus turn to MARS ...
For example, if the functional form of the model does not match the data, R 2 can be high despite a poor model fit. Anscombe's quartet consists of four example data sets with similarly high R 2 values, but data that sometimes clearly does not fit the regression line. Instead, the data sets include outliers, high-leverage points, or non-linearities.
In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative.
Similarly, q can be estimated by using the autocorrelation functions. Both p and q can be determined simultaneously using extended autocorrelation functions (EACF). [9] Further information can be gleaned by considering the same functions for the residuals of a model fitted with an initial selection of p and q.