enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Median (geometry) - Wikipedia

    en.wikipedia.org/wiki/Median_(geometry)

    The triangle medians and the centroid.. In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. . Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's cent

  3. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    The centroid of a triangle is the point of intersection of its medians (the lines joining each vertex with the midpoint of the opposite side). [6] The centroid divides each of the medians in the ratio 2 : 1 , {\displaystyle 2:1,} which is to say it is located 1 3 {\displaystyle {\tfrac {1}{3}}} of the distance from each side to the opposite ...

  4. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In a triangle, four basic types of sets of concurrent lines are altitudes, angle bisectors, medians, and perpendicular bisectors: A triangle's altitudes run from each vertex and meet the opposite side at a right angle. The point where the three altitudes meet is the orthocenter.

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The three medians intersect in a single point, the triangle's centroid or geometric barycenter. The centroid of a rigid triangular object (cut out of a thin sheet of uniform density) is also its center of mass: the object can be balanced on its centroid in a uniform gravitational field. [30]

  6. Cevian - Wikipedia

    en.wikipedia.org/wiki/Cevian

    In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [ 1 ] [ 2 ] Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva , who proved a well-known theorem about cevians which also bears his name.

  7. Midpoint - Wikipedia

    en.wikipedia.org/wiki/Midpoint

    The three medians of a triangle intersect at the triangle's centroid (the point on which the triangle would balance if it were made of a thin sheet of uniform-density metal). The nine-point center of a triangle lies at the midpoint between the circumcenter and the orthocenter. These points are all on the Euler line.

  8. Medial triangle - Wikipedia

    en.wikipedia.org/wiki/Medial_triangle

    A reference triangle's medial triangle is congruent to the triangle whose vertices are the midpoints between the reference triangle's orthocenter and its vertices. [2]: p.103, #206, p.108, #1 The incenter of a triangle lies in its medial triangle. [3]: p.233, Lemma 1 A point in the interior of a triangle is the center of an inellipse of the ...

  9. Median triangle - Wikipedia

    en.wikipedia.org/wiki/Median_triangle

    The median triangle of a given (reference) triangle is a triangle, the sides of which are equal and parallel to the medians of its reference triangle.