Search results
Results from the WOW.Com Content Network
The sulfur–iodine cycle (S–I cycle) is a series of thermochemical processes used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.
In chemistry, thermochemical cycles combine solely heat sources (thermo) with chemical reactions to split water into its hydrogen and oxygen components. [1] The term cycle is used because aside of water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled. If work is partially used as an input, the ...
The hydrogen cycle consists of hydrogen exchanges between biotic (living) and abiotic (non-living) sources and sinks of hydrogen-containing compounds. Hydrogen (H) is the most abundant element in the universe. [1] On Earth, common H-containing inorganic molecules include water (H 2 O), hydrogen gas (H 2), hydrogen sulfide (H 2 S), and ammonia ...
Water can be broken down into its constituent hydrogen and oxygen by metabolic or abiotic processes, and later recombined to become water again. While the water cycle is itself a biogeochemical cycle, flow of water over and beneath the Earth is a key component of the cycling of other biogeochemicals. [8]
Recent studies indicate a hydrological cycle of water-ammonia vastly different to the type operating on terrestrial planets like Earth [18] and also a cycle of hydrogen sulfide. [19] Significant chemical cycles exist on Jupiter's moons. Recent evidence points to Europa possessing several active cycles, most notably a water cycle. [20]
Methods to produce hydrogen without the use of fossil fuels involve the process of water splitting, or splitting the water molecule (H 2 O) into its components oxygen and hydrogen. When the source of energy for water splitting is renewable or low-carbon, the hydrogen produced is sometimes referred to as green hydrogen .
Pourbaix diagram for water, including equilibrium regions for water, oxygen and hydrogen at STP. The vertical scale is the electrode potential of hydrogen or non-interacting electrode relative to an SHE electrode, the horizontal scale is the pH of the electrolyte (otherwise non-interacting).
A biogeochemical cycle, or more generally a cycle of matter, [1] is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is ...