enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.

  3. Unimodality - Wikipedia

    en.wikipedia.org/wiki/Unimodality

    Note that only the largest peak would correspond to a mode in the strict sense of the definition of mode. In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak. The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of ...

  4. Noncentral t-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_t-distribution

    Moreover, the negative of the mode is exactly the mode for a noncentral t-distribution with the same number of degrees of freedom ν but noncentrality parameter −μ. The mode is strictly increasing with μ (it always moves in the same direction as μ is adjusted in). In the limit, when μ → 0, the mode is approximated by

  5. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...

  6. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Even if the sample originates from a complex non-Gaussian distribution, it can be well-approximated because the CLT allows it to be simplified to a Gaussian distribution ("for a large number of observable samples, the sum of many random variables will have an approximately normal distribution").

  7. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.

  8. Non-uniform random variate generation - Wikipedia

    en.wikipedia.org/wiki/Non-uniform_random_variate...

    For a discrete probability distribution with a finite number n of indices at which the probability mass function f takes non-zero values, the basic sampling algorithm is straightforward. The interval [0, 1) is divided in n intervals [0, f(1)), [f(1), f(1) + f(2)), ... The width of interval i equals the probability f(i).

  9. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics.