Search results
Results from the WOW.Com Content Network
Heat transfer by radiation is a function of both the heat-sink temperature and the temperature of the surroundings that the heat sink is optically coupled with. When both of these temperatures are on the order of 0 °C to 100 °C, the contribution of radiation compared to convection is generally small, and this factor is often neglected.
Microprocessors and power handling semiconductors are examples of electronics that need a heat sink to reduce their temperature through increased thermal mass and heat dissipation (primarily by conduction and convection and to a lesser extent by radiation).
A cooling system can do this using an active cooling method (e.g. conduction coupled with forced convection) such as a heat sink with a fan, or any of the two passive cooling methods: thermal radiation or conduction. Typically, a combination of these methods is used.
A case's motherboard and power supply unit (PSU) form factor must all match, though some smaller form factor motherboards of the same family will fit larger cases. For example, an ATX case will usually accommodate a microATX motherboard. Laptop computers generally use highly integrated, miniaturized, and customized motherboards.
For example, a CPU cooling air duct at the back of a tower case would inhale warm air from a graphics card exhaust. Moving all exhausts to one side of the case, conventionally the back/top, helps to keep the intake air cool. Hiding cables behind motherboard tray or simply apply ziptie and tucking cables away to provide unhindered airflow.
A laptop computer heat pipe system. A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces. [1]At the hot interface of a heat pipe, a volatile liquid in contact with a thermally conductive solid surface turns into a vapor by absorbing heat from that surface.
Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species (mass transfer in the form of advection), either cold or hot, to achieve heat transfer. While these mechanisms ...
The amount of conduction, convection, or radiation of an object determines the amount of heat it transfers. Increasing the temperature gradient between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer.