Search results
Results from the WOW.Com Content Network
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
The Nvidia CUDA Compiler (NVCC) translates code written in CUDA, a C++-like language, into PTX instructions (an assembly language represented as American Standard Code for Information Interchange text), and the graphics driver contains a compiler which translates PTX instructions into executable binary code, [2] which can run on the processing ...
rCUDA, which stands for Remote CUDA, is a type of middleware software framework for remote GPU virtualization. Fully compatible with the CUDA application programming interface , it allows the allocation of one or more CUDA-enabled GPUs to a single application. Each GPU can be part of a cluster or running inside of a virtual machine. The ...
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.
CUDA 9.0–9.2 comes with these other components: CUTLASS 1.0 – custom linear algebra algorithms, NVIDIA Video Decoder was deprecated in CUDA 9.2; it is now available in NVIDIA Video Codec SDK; CUDA 10 comes with these other components: nvJPEG – Hybrid (CPU and GPU) JPEG processing; CUDA 11.0–11.8 comes with these other components: [19 ...
In CUDA, the kernel is executed with the aid of threads. The thread is an abstract entity that represents the execution of the kernel. A kernel is a function that compiles to run on a special device. Multi threaded applications use many such threads that are running at the same time, to organize parallel computation.
Due to a trend of increasing power of mobile GPUs, general-purpose programming became available also on the mobile devices running major mobile operating systems. Google Android 4.2 enabled running RenderScript code on the mobile device GPU. [ 25 ]
PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo, a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and inference performance across major cloud platforms.