Search results
Results from the WOW.Com Content Network
In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors) [1] states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. [2]
Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.
The phrase Gauss–Markov is used in two different ways: Gauss–Markov processes in probability theory The Gauss–Markov theorem in mathematical statistics (in this theorem, one does not assume the probability distributions are Gaussian.)
Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck . The Ornstein–Uhlenbeck process is a stationary Gauss–Markov process , which means that it is a Gaussian process , a Markov process , and is ...
The Gauss–Markov theorem shows that, when this is so, ^ is a best linear unbiased estimator . If, however, the measurements are uncorrelated but have different uncertainties, a modified approach might be adopted.
Least-squares adjustment is a model for the solution of an overdetermined system of equations based on the principle of least squares of observation residuals. It is used extensively in the disciplines of surveying, geodesy, and photogrammetry—the field of geomatics, collectively.
The prototypical Markov random field is the Ising model; indeed, the Markov random field was introduced as the general setting for the Ising model. [2] In the domain of artificial intelligence, a Markov random field is used to model various low- to mid-level tasks in image processing and computer vision. [3]
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...