Search results
Results from the WOW.Com Content Network
Dissimilatory nitrate reduction to ammonium is a two step process, reducing NO 3 − to NO 2 − then NO 2 − to NH 4 +, though the reaction may begin with NO 2 − directly. [1] Each step is mediated by a different enzyme, the first step of dissimilatory nitrate reduction to ammonium is usually mediated by a periplasmic nitrate reductase.
A maximum ammonium removal rate of 0.4 kg N/m 3 /d was achieved. It was shown that for every mole of ammonium consumed, 0.6 mol of nitrate was required, resulting in the formation of 0.8 mol of N 2 gas. In 1995, the biological nature of anammox was identified. [27] Labeling experiments with 15 NH + 4 in combination with 14 NO − 3 showed that ...
Ammonium nitrate is an important fertilizer with NPK rating 34-0-0 (34% nitrogen). [17] It is less concentrated than urea (46-0-0), giving ammonium nitrate a slight transportation disadvantage. Ammonium nitrate's advantage over urea is that it is more stable and does not rapidly lose nitrogen to the atmosphere.
The presence of AMO has been confirmed on many substrates that are nitrogen inhibitors such as dicyandiamide, ammonium thiosulfate, and nitrapyrin. The conversion of ammonia to hydroxylamine is the first step in nitrification, where AH 2 represents a range of potential electron donors. NH 3 + AH 2 + O 2 → NH 2 OH + A + H 2 O. This reaction is ...
Direct reduction from nitrate to ammonium, a process known as dissimilatory nitrate reduction to ammonium or DNRA, [6] is also possible for organisms that have the nrf-gene. [ 7 ] [ 8 ] This is less common than denitrification in most ecosystems as a means of nitrate reduction.
When a solution of nitrate ions is mixed with aqueous sodium hydroxide, adding Devarda's alloy and heating the mixture gently, liberates ammonia gas. After conversion under the form of ammonia, the total nitrogen is then determined by Kjeldahl method. [7] The reduction of nitrate by the Devarda's alloy is given by the following equation: 3 NO −
Fritz Haber, 1918. The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [2] [3] It converts atmospheric nitrogen (N 2) to ammonia (NH 3) by a reaction with hydrogen (H 2) using finely divided iron metal as a catalyst:
Bacteria are able to convert ammonia to nitrite and nitrate but they are inhibited by light so this must occur below the euphotic zone. [43] Ammonification or Mineralization is performed by bacteria to convert organic nitrogen to ammonia. Nitrification can then occur to convert the ammonium to nitrite and nitrate. [44]