enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    12: 479 001 600: 13: 6 227 020 800: 14: 87 178 291 200: 15: ... the factorial of a non-negative integer ... Divide all of the exponents by two (rounding down to an ...

  3. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  4. Primorial - Wikipedia

    en.wikipedia.org/wiki/Primorial

    The n-compositorial is equal to the n-factorial divided by the primorial n#. The compositorials are The compositorials are 1 , 4 , 24 , 192 , 1728 , 17 280 , 207 360 , 2 903 040 , 43 545 600 , 696 729 600 , ...

  5. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  6. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    For each of the values of n from 2 to 30, the following table shows the number (n − 1)! and the remainder when (n − 1)! is divided by n. (In the notation of modular arithmetic, the remainder when m is divided by n is written m mod n.) The background color is blue for prime values of n, gold for composite values.

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The multiplicity of a prime which does not divide n may be called 0 or may be ... A factorial x! is the product of all ... 10, 12, 15, 16 (sequence A051037 ...

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    An alternative version uses the fact that the Poisson distribution converges to a normal distribution by the Central Limit Theorem. [5]Since the Poisson distribution with parameter converges to a normal distribution with mean and variance , their density functions will be approximately the same:

  9. Kempner function - Wikipedia

    en.wikipedia.org/wiki/Kempner_function

    In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...