Search results
Results from the WOW.Com Content Network
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.
Std enthalpy change of vaporization, Δ vap H o: 37.6 ± 0.5 kJ/mol [4] Std entropy change of vaporization, Δ vap S o: 113 J/(mol·K) Solid properties Std enthalpy change of formation, Δ f H o solid? kJ/mol Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o ...
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Std enthalpy change of fusion, Δ fus H o +5.653 kJ/mol Std entropy change of fusion, Δ fus S o +28.93 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o +23.35 kJ/mol at BP of −33.4 °C Std entropy change of vaporization, Δ vap S o +97.41 J/(mol·K) at BP of −33.4 °C Solid properties Std enthalpy change of formation, Δ f H o ...
Std enthalpy change of vaporization, Δ vap H o +13.5 kJ/mol Std entropy change of vaporization, Δ vap S o? J/(mol·K) Solid properties Std enthalpy change of formation, Δ f H o solid? kJ/mol Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid? kJ/mol ...
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2257 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...