Search results
Results from the WOW.Com Content Network
The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle). In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex.
Three of them are the medians, which are the only area bisectors that go through the centroid. Three other area bisectors are parallel to the triangle's sides. Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter. There can be one, two, or three of these for any given ...
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]
The extended base of a triangle (a particular case of an extended side) is the line that contains the base. When the triangle is obtuse and the base is chosen to be one of the sides adjacent to the obtuse angle, then the altitude dropped perpendicularly from the apex to the base intersects the extended base outside of the triangle.
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
Given a triangle with sides of length a, b, and c, if a 2 + b 2 = c 2, then the angle between sides a and b is a right angle. For any three positive real numbers a, b, and c such that a 2 + b 2 = c 2, there exists a triangle with sides a, b and c as a consequence of the converse of the triangle inequality.
A general form triangle has six main characteristics (see picture): three linear (side lengths a, b, c) and three angular (α, β, γ). The classical plane trigonometry problem is to specify three of the six characteristics and determine the other three. A triangle can be uniquely determined in this sense when given any of the following: [1] [2]