enow.com Web Search

  1. Ad

    related to: linear multistep method formula

Search results

  1. Results from the WOW.Com Content Network
  2. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Now suppose that a consistent linear multistep method is applied to a sufficiently smooth differential equation and that the starting values , …, all converge to the initial value as . Then, the numerical solution converges to the exact solution as h → 0 {\displaystyle h\to 0} if and only if the method is zero-stable.

  3. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or Runge–Kutta methods.A further division can be realized by dividing methods into those that are explicit and those that are implicit.

  4. Zero stability - Wikipedia

    en.wikipedia.org/wiki/Zero_stability

    A linear multistep method is zero-stable if all roots of the characteristic equation that arises on applying the method to ′ = have magnitude less than or equal to unity, and that all roots with unit magnitude are simple. [2]

  5. Truncation error (numerical integration) - Wikipedia

    en.wikipedia.org/wiki/Truncation_error...

    The relation between local and global truncation errors is slightly different from in the simpler setting of one-step methods. For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors. Linear multistep methods that satisfy the condition of zero ...

  6. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  7. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method and a linear multistep method.

  8. General linear methods - Wikipedia

    en.wikipedia.org/wiki/General_linear_methods

    General linear methods (GLMs) are a large class of numerical methods used to obtain numerical solutions to ordinary differential equations. They include multistage Runge–Kutta methods that use intermediate collocation points , as well as linear multistep methods that save a finite time history of the solution.

  9. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    Implicit multistep methods can only be A-stable if their order is at most 2. The latter result is known as the second Dahlquist barrier; it restricts the usefulness of linear multistep methods for stiff equations. An example of a second-order A-stable method is the trapezoidal rule mentioned above, which can also be considered as a linear ...

  1. Ad

    related to: linear multistep method formula