Search results
Results from the WOW.Com Content Network
Hence, gaseous viscosity increases with temperature. In liquids, viscous forces are caused by molecules exerting attractive forces on each other across layers of flow. Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the ...
In this regime, the mechanisms of momentum transport interpolate between liquid-like and gas-like behavior. For example, along a supercritical isobar (constant-pressure surface), the kinematic viscosity decreases at low temperature and increases at high temperature, with a minimum in between. [32] [33] A rough estimate for the value at the ...
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
The glass transition of a liquid to a solid-like state may occur with either cooling or compression. [10] The transition comprises a smooth increase in the viscosity of a material by as much as 17 orders of magnitude within a temperature range of 500 K without any pronounced change in material structure. [11]
The viscosity index (VI) is an arbitrary, unit-less measure of a fluid's change in viscosity relative to temperature change. It is mostly used to characterize the viscosity-temperature behavior of lubricating oils. The lower the VI, the more the viscosity is affected by changes in temperature.
Moreover, at constant frequency, an increase in temperature results in a reduction of the modulus due to an increase in free volume and chain movement. Time–temperature superposition is a procedure that has become important in the field of polymers to observe the dependence upon temperature on the change of viscosity of a polymeric fluid.
The gas viscosity model of Chung et alios (1988) [5] is combination of the Chapman–Enskog(1964) kinetic theory of viscosity for dilute gases and the empirical expression of Neufeld et alios (1972) [6] for the reduced collision integral, but expanded empirical to handle polyatomic, polar and hydrogen bonding fluids over a wide temperature ...
Generally speaking, an increase in temperature correlates to a logarithmic decrease in the time required to impart equal strain under a constant stress. In other words, it takes less work to stretch a viscoelastic material an equal distance at a higher temperature than it does at a lower temperature.