Search results
Results from the WOW.Com Content Network
In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics , which refers to a set of such values.
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency range of a signal and the sample rate required to avoid a type of distortion called aliasing. The theorem states that the sample rate must be at least twice the bandwidth of the signal to avoid aliasing.
In signal processing, oversampling is the process of sampling a signal at a sampling frequency significantly higher than the Nyquist rate. Theoretically, a bandwidth-limited signal can be perfectly reconstructed if sampled at the Nyquist rate or above it. The Nyquist rate is defined as twice the bandwidth of the signal.
Instead, the sampling of the signal should be made in a short enough interval that it can represent the instantaneous value of the signal with the highest frequency. This means that in the FM radio example above, the sampling circuit must be able to capture a signal with a frequency of 108 MHz, not 43.2 MHz.
In digital signal processing (DSP), a normalized frequency is a ratio of a variable frequency and a constant frequency associated with a system (such as a sampling rate, ). Some software applications require normalized inputs and produce normalized outputs, which can be re-scaled to physical units when necessary.
Decreasing the sampling rate is known as decimation. Antoniou, Andreas (2006). Digital Signal Processing. McGraw-Hill. p. 830. ISBN 0-07-145424-1. Decimators can be used to reduce the sampling frequency, whereas interpolators can be used to increase it. Milic, Ljiljana (2009). Multirate Filtering for Digital Signal Processing. New York: Hershey ...
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal