enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    As was our expectation, the frequency distribution can be separated into two parts. One is t ≤ 0 and the other is t > 0. The white part is the frequency band occupied by x(t) and the black part is not used. Note that for each point in time there is both a negative (upper white part) and a positive (lower white part) frequency component.

  3. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.

  4. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statistics as well as in the study of physical phenomena exhibiting normal distribution (e.g., diffusion). The Fourier transform of a Gaussian function is another Gaussian function.

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    While the ordinary DFT corresponds to a periodic signal in both time and frequency domains, = / produces a signal that is anti-periodic in frequency domain (+ =) and vice versa for = /. Thus, the specific case of a = b = 1 / 2 {\displaystyle a=b=1/2} is known as an odd-time odd-frequency discrete Fourier transform (or O 2 DFT).

  6. Frequency shift - Wikipedia

    en.wikipedia.org/wiki/Frequency_shift

    In the physical sciences and in telecommunication, the term frequency shift may refer to: Any change in frequency; A Doppler shift; In facsimile, a frequency modulation system where one frequency represents picture black and another frequency represents picture white; Spectrum shifting in signal processing, see Discrete Fourier transform#Shift ...

  7. Gaussian beam - Wikipedia

    en.wikipedia.org/wiki/Gaussian_beam

    The equations below assume a beam with a circular cross-section at all values of z; this can be seen by noting that a single transverse dimension, r, appears.Beams with elliptical cross-sections, or with waists at different positions in z for the two transverse dimensions (astigmatic beams) can also be described as Gaussian beams, but with distinct values of w 0 and of the z = 0 location for ...

  8. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    The response value of the Gaussian filter at this cut-off frequency equals exp(−0.5) ≈ 0.607. However, it is more common to define the cut-off frequency as the half power point: where the filter response is reduced to 0.5 (−3 dB) in the power spectrum, or 1/ √ 2 ≈ 0.707 in the amplitude spectrum (see e.g. Butterworth filter).

  9. White noise - Wikipedia

    en.wikipedia.org/wiki/White_noise

    This model is called a Gaussian white noise signal (or process). In the mathematical field known as white noise analysis, a Gaussian white noise is defined as a stochastic tempered distribution, i.e. a random variable with values in the space ′ of tempered distributions.