Search results
Results from the WOW.Com Content Network
Among his several books and standard topology and algebraic topology textbooks are: Elements of Modern Topology (1968), Low-Dimensional Topology (1979, co-edited with T.L. Thickstun), Topology: a geometric account of general topology, homotopy types, and the fundamental groupoid (1998), [15] [16] Topology and Groupoids (2006) [17] and ...
Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. ISBN 0-521-79540-0. A modern, geometrically flavored introduction to algebraic topology. The book is available free in PDF and PostScript formats on the author's homepage. Kainen, P. C. (1971). "Weak Adjoint Functors". Mathematische Zeitschrift. 122: 1– 9.
Readers of the book are expected to already be familiar with general topology, linear algebra, and group theory. [1] However, as a textbook, it lacks exercises, and reviewer Bill Wood suggests its use for a student project rather than for a formal course. [1] Many other graduate algebraic topology textbooks include coverage of the same topic. [4]
Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces The main article for this category is Algebraic topology . Contents
He was named to the 2021 class of fellows of the American Mathematical Society "for contributions to algebraic topology and related areas of algebraic geometry, representation theory, and mathematical physics". [16] In 2022 he received for the second time the Oswald Veblen Prize in Geometry. [17]
In mathematics, Lehrbuch der Topologie (German for "textbook of topology") is a book by Herbert Seifert and William Threlfall, first published in 1934 and published in an English translation in 1980. It was one of the earliest textbooks on algebraic topology, and was the standard reference on this topic for many years. Albert W. Tucker wrote a ...
In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.
This terminology is often used in the case of the algebraic topology on the set of discrete, faithful representations of a Kleinian group into PSL(2,C). Another topology, the geometric topology (also called the Chabauty topology ), can be put on the set of images of the representations, and its closure can include extra Kleinian groups that are ...