enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  3. File:Dirichlet.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Dirichlet.pdf

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  4. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    Fixing an integer k ≥ 1, the Dirichlet L-functions for characters modulo k are linear combinations, with constant coefficients, of the ζ(s,a) where a = r/k and r = 1, 2, ..., k. This means that the Hurwitz zeta function for rational a has analytic properties that are closely related to the Dirichlet L-functions.

  5. Dirichlet's principle - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_principle

    The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions. [1]Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum.

  6. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    If the sample space of the Dirichlet distribution is interpreted as a discrete probability distribution, then intuitively the concentration parameter can be thought of as determining how "concentrated" the probability mass of the Dirichlet distribution to its center, leading to samples with mass dispersed almost equally among all components, i ...

  7. Dirichlet process - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_process

    As an example, a bag of 100 real-world dice is a random probability mass function (random pmf)—to sample this random pmf you put your hand in the bag and draw out a die, that is, you draw a pmf. A bag of dice manufactured using a crude process 100 years ago will likely have probabilities that deviate wildly from the uniform pmf, whereas a bag ...

  8. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    Of particular importance is the fact that the L 1 norm of D n on [,] diverges to infinity as n → ∞.One can estimate that ‖ ‖ = (⁡). By using a Riemann-sum argument to estimate the contribution in the largest neighbourhood of zero in which is positive, and Jensen's inequality for the remaining part, it is also possible to show that: ‖ ‖ ⁡ + ⁡ where ⁡ is the sine integral

  9. Dirichlet hyperbola method - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_hyperbola_method

    Let σ 0 (n) be the divisor-counting function, and let D(n) be its summatory function: = = (). Computing D(n) naïvely requires factoring every integer in the interval [1, n]; an improvement can be made by using a modified Sieve of Eratosthenes, but this still requires Õ(n) time.