enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .

  3. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  4. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Entropy (thermodynamics) Cross entropy – is a measure of the average number of bits needed to identify an event from a set of possibilities between two probability distributions; Entropy (arrow of time) Entropy encoding – a coding scheme that assigns codes to symbols so as to match code lengths with the probabilities of the symbols. Entropy ...

  5. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies ⁡ [(())] ⁡ [⁡ (())], where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to ...

  6. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    (Here, I(x) is the self-information, which is the entropy contribution of an individual message, and is the expected value.) A property of entropy is that it is maximized when all the messages in the message space are equiprobable p(x) = 1/n; i.e., most unpredictable, in which case H(X) = log n.

  7. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    The entropy () thus sets a minimum value for the cross-entropy (,), the expected number of bits required when using a code based on Q rather than P; and the Kullback–Leibler divergence therefore represents the expected number of extra bits that must be transmitted to identify a value x drawn from X, if a code is used corresponding to the ...

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).

  9. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .