enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Entropy (thermodynamics) Cross entropy – is a measure of the average number of bits needed to identify an event from a set of possibilities between two probability distributions; Entropy (arrow of time) Entropy encoding – a coding scheme that assigns codes to symbols so as to match code lengths with the probabilities of the symbols. Entropy ...

  4. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  5. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    (Here, I(x) is the self-information, which is the entropy contribution of an individual message, and is the expected value.) A property of entropy is that it is maximized when all the messages in the message space are equiprobable p(x) = 1/n; i.e., most unpredictable, in which case H(X) = log n.

  6. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .

  7. Binary symmetric channel - Wikipedia

    en.wikipedia.org/wiki/Binary_symmetric_channel

    The entropy at the output for a given and fixed input symbol ((| =)) equals the binary entropy function, which leads to the third line and this can be further simplified. In the last line, only the first term H ( Y ) {\displaystyle H(Y)} depends on the input distribution p X ( x ) {\displaystyle p_{X}(x)} .

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).

  9. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source.