Search results
Results from the WOW.Com Content Network
The maximum flow problem was first formulated in 1954 by T. E. Harris and F. S. Ross as a simplified model of Soviet railway traffic flow. [1] [2] [3]In 1955, Lester R. Ford, Jr. and Delbert R. Fulkerson created the first known algorithm, the Ford–Fulkerson algorithm.
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.
This caused a lack of any known polynomial-time algorithm to solve the max flow problem in generic cases. Dinitz's algorithm and the Edmonds–Karp algorithm (published in 1972) both independently showed that in the Ford–Fulkerson algorithm, if each augmenting path is the shortest one, then the length of the augmenting paths is non-decreasing ...
The simplest and most common problem using flow networks is to find what is called the maximum flow, which provides the largest possible total flow from the source to the sink in a given graph. There are many other problems which can be solved using max flow algorithms, if they are appropriately modeled as flow networks, such as bipartite ...
This means all v ∈ V \ {s, t} have no excess flow, and with no excess the preflow f obeys the flow conservation constraint and can be considered a normal flow. This flow is the maximum flow according to the max-flow min-cut theorem since there is no augmenting path from s to t. [8] Therefore, the algorithm will return the maximum flow upon ...
For any directed uniform multicommodity flow problem with n nodes, (), where f is the max-flow and is the min-cut of the uniform multicommodity flow problem. [ 1 ] The major difference in the proof methodology compared to Theorem 2 is that, now the edge directions need to be considered when defining distance labels in stage 1 and for growing ...
The minimum cost variant of the multi-commodity flow problem is a generalization of the minimum cost flow problem (in which there is merely one source and one sink ). Variants of the circulation problem are generalizations of all flow problems. That is, any flow problem can be viewed as a particular circulation problem.