enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    The minimal polynomial is often the same as the characteristic polynomial, but not always. For example, if A is a multiple aI n of the identity matrix, then its minimal polynomial is X − a since the kernel of aI n − A = 0 is already the entire space; on the other hand its characteristic polynomial is (X − a) n (the only eigenvalue is a ...

  3. Minimal polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(field...

    Minimal polynomials are useful for constructing and analyzing field extensions. When α is algebraic with minimal polynomial f(x), the smallest field that contains both F and α is isomorphic to the quotient ring F[x]/ f(x) , where f(x) is the ideal of F[x] generated by f(x). Minimal polynomials are also used to define conjugate elements.

  4. Minimal polynomial of 2cos (2pi/n) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_of_2cos...

    In number theory, the real parts of the roots of unity are related to one-another by means of the minimal polynomial of ⁡ (/). The roots of the minimal polynomial are twice the real part of the roots of unity, where the real part of a root of unity is just cos ⁡ ( 2 k π / n ) {\displaystyle \cos \left(2k\pi /n\right)} with k {\displaystyle ...

  5. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive nth-root of unity (/ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is

  6. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The minimal polynomial P of a square matrix A is the unique monic polynomial of least degree, m, such that P(A) = 0. Alternatively, the set of polynomials that annihilate a given A form an ideal I in C [ x ], the principal ideal domain of polynomials with complex coefficients.

  7. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    This polynomial is called its minimal polynomial. If its minimal polynomial has degree n, then the algebraic number is said to be of degree n. For example, all rational numbers have degree 1, and an algebraic number of degree 2 is a quadratic irrational. The algebraic numbers are dense in the reals. This follows from the fact they contain the ...

  8. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).

  9. Simple extension - Wikipedia

    en.wikipedia.org/wiki/Simple_extension

    Otherwise, θ is algebraic over K; that is, θ is a root of a polynomial over K. The monic polynomial of minimal degree n, with θ as a root, is called the minimal polynomial of θ. Its degree equals the degree of the field extension, that is, the dimension of L viewed as a K-vector space.