Ads
related to: minimal polynomials in algebra 2teacherspayteachers.com has been visited by 100K+ users in the past month
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Packets
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...
The minimal polynomial f of α is irreducible, i.e. it cannot be factorized as f = gh for two polynomials g and h of strictly lower degree. To prove this, first observe that any factorization f = gh implies that either g ( α ) = 0 or h ( α ) = 0, because f ( α ) = 0 and F is a field (hence also an integral domain ).
The minimal polynomial over K of θ is thus the monic polynomial of minimal degree that has θ as a root. Because L is a field, this minimal polynomial is necessarily irreducible over K. For example, the minimal polynomial (over the reals as well as over the rationals) of the complex number i is +. The cyclotomic polynomials are the minimal ...
In number theory, the real parts of the roots of unity are related to one-another by means of the minimal polynomial of (/). The roots of the minimal polynomial are twice the real part of the roots of unity, where the real part of a root of unity is just cos ( 2 k π / n ) {\displaystyle \cos \left(2k\pi /n\right)} with k {\displaystyle ...
In linear algebra, the Frobenius companion matrix of the monic polynomial () ... coincides with the minimal polynomial of A, i.e. the minimal polynomial has degree n;
A polynomial P is annihilating or called an annihilating polynomial in linear algebra and operator theory if the polynomial considered as a function of the linear operator or a matrix A evaluates to zero, i.e., is such that P(A) = 0. Note that all characteristic polynomials and minimal polynomials of A are annihilating polynomials
An extension L that is a splitting field for a set of polynomials p(X) over K is called a normal extension of K.. Given an algebraically closed field A containing K, there is a unique splitting field L of p between K and A, generated by the roots of p.
Characteristic polynomial, and attributes that can be derived from it: Determinant; Trace; Eigenvalues, and their algebraic multiplicities; Geometric multiplicities of eigenvalues (but not the eigenspaces, which are transformed according to the base change matrix P used). Minimal polynomial; Frobenius normal form
Ads
related to: minimal polynomials in algebra 2teacherspayteachers.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month