Search results
Results from the WOW.Com Content Network
For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.
NACA experience provided a model for World War II research, the postwar government laboratories, and NACA's successor, the National Aeronautics and Space Administration (NASA). NACA also participated in development of the first aircraft to fly to the "edge of space", North American's X-15. NACA airfoils are still used on modern aircraft.
The Bagaliante is constructed from wood and metal and is of pod-and-boom layout. [1]The 12.2 m (40.0 ft) span wing employs a Göttingen 535 airfoil at the wing root, transitioning to an NACA 4412 section at the wingtip.
The Ferrari F40 sports car has "NACA style" side and hood scoops.. It is especially favored in racing car design. [4] [5] Sports cars featuring prominent NACA ducts include the Ferrari F40, the Lamborghini Countach, the 1996–2002 Dodge Viper, the 1971–1973 Ford Mustang, the 1973 Pontiac GTO, the 1979 Porsche 924 Turbo, the Maserati Biturbo, the Nissan S130, and the Porsche 911 GT2.
The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1] The airfoil has a thickness of 11.7 percent and is flat on the lower surface aft of 30 percent of chord. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings.
Streamlines around a NACA 0012 airfoil at moderate angle of attack. A foil generates lift primarily because of its shape and angle of attack.When oriented at a suitable angle, the foil deflects the oncoming fluid, resulting in a force on the foil in the direction opposite to the deflection.
Eastman Jacobs joined NACA in 1925 after earning a bachelor's degree in Electrical Engineering at the University of California, Berkeley. He applied at the Bell Labs but was not accepted and opted for his second choice Langley. His knowledge of complex analysis was key to current airfoil design techniques at the time. [1]
The NACA cowling enhanced speed through drag reduction while improving engine cooling. The cowling consists of a symmetric, circular airfoil that is wrapped around the engine. In a normal planar airfoil, like a wing, the difference in airspeeds, and their associated changes in pressure, on the top and bottom surfaces, enhances lift.