enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    For any vector space V, the projection X × V → X makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π −1 (U) is isomorphic [nb 11] to the trivial bundle ...

  3. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Let L(V,W) denote the set of all linear maps from V to W (both of which are vector spaces over F). Then L(V,W) is a subspace of W V since it is closed under addition and scalar multiplication. Note that L(F n,F m) can be identified with the space of matrices F m×n in a natural way. In fact, by choosing appropriate bases for finite-dimensional ...

  4. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.

  5. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    Consider a linear map T: WV from a vector space W of dimension n to a vector space V of dimension m. It is represented on "old" bases of V and W by a m×n matrix M. A change of bases is defined by an m×m change-of-basis matrix P for V, and an n×n change-of-basis matrix Q for W. On the "new" bases, the matrix of T is .

  6. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    Given a vector space V over a field K, the span of a set S of vectors (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. It is thus the smallest (for set inclusion) subspace containing W. It is referred to as the subspace spanned by S, or by the vectors in S.

  7. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    For a transformation between finite-dimensional vector spaces, this is just the difference dim(V) − dim(W), by rank–nullity. This gives an indication of how many solutions or how many constraints one has: if mapping from a larger space to a smaller one, the map may be onto, and thus will have degrees of freedom even without constraints.

  8. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    When V = W are the same vector space, a linear map T : VV is also known as a linear operator on V. A bijective linear map between two vector spaces (that is, every vector from the second space is associated with exactly one in the first) is an isomorphism. Because an isomorphism preserves linear structure, two isomorphic vector spaces are ...

  9. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics.