Search results
Results from the WOW.Com Content Network
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
For example, squares (resp. triangles) have 4 sides (resp. 3 sides); or compact (resp. Lindelöf) spaces are ones where every open cover has a finite (resp. countable) open subcover. sharp Often, a mathematical theorem will establish constraints on the behavior of some object; for example, a function will be shown to have an upper or lower bound.
Equivalence class: given an equivalence relation, [] often denotes the equivalence class of the element x. 3. Integral part : if x is a real number , [ x ] {\displaystyle [x]} often denotes the integral part or truncation of x , that is, the integer obtained by removing all digits after the decimal mark .
An antonym is one of a pair of words with opposite meanings. Each word in the pair is the antithesis of the other. A word may have more than one antonym. There are three categories of antonyms identified by the nature of the relationship between the opposed meanings.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred to by using ordinal numbers, as in fourth root, twentieth root, etc. For example: 2 is a square root of 4, since 2 2 = 4. −2 is also a square root of 4, since (−2) 2 = 4.
In mathematics, and especially in category theory, a commutative diagram is a diagram of objects, also known as vertices, and morphisms, also known as arrows or edges, such that when selecting two objects any directed path through the diagram leads to the same result by composition.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The KWL chart was created by Donna Ogle in 1986. [2] A KWL chart can be used for all subjects in a whole group or small group atmosphere. The chart is a comprehension strategy used to activate background knowledge prior to reading and is completely student centered. The teacher divides a piece of chart paper into three columns.