Search results
Results from the WOW.Com Content Network
It requires memorization of the multiplication table for single digits. This is the usual algorithm for multiplying larger numbers by hand in base 10. A person doing long multiplication on paper will write down all the products and then add them together; an abacus-user will sum the products as soon as each one is computed.
The oldest known multiplication tables were used by the Babylonians about 4000 years ago. [2] However, they used a base of 60. [2] The oldest known tables using a base of 10 are the Chinese decimal multiplication table on bamboo strips dating to about 305 BC, during China's Warring States period. [2] "Table of Pythagoras" on Napier's bones [3]
Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]
If the tables are held on single-sided rods, 40 rods are needed in order to multiply 4-digit numbers – since numbers may have repeated digits, four copies of the multiplication table for each of the digits 0 to 9 are needed. If square rods are used, the 40 multiplication tables can be inscribed on 10 rods.
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [ 1 ] [ 2 ] [ 3 ] On an expression or formula calculator , one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
divide a 16-digit number by an 8-digit divisor. Addition or subtraction is performed in a single step, with a turn of the crank. Multiplication and division are performed digit by digit on the multiplier or divisor digits, in a procedure equivalent to the familiar long multiplication and long division procedures taught in
This is the "grid" or "boxes" structure which gives the multiplication method its name. Faced with a slightly larger multiplication, such as 34 × 13, pupils may initially be encouraged to also break this into tens. So, expanding 34 as 10 + 10 + 10 + 4 and 13 as 10 + 3, the product 34 × 13 might be represented:
Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.