enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    The oldest known multiplication tables were used by the Babylonians about 4000 years ago. [2] However, they used a base of 60. [2] The oldest known tables using a base of 10 are the Chinese decimal multiplication table on bamboo strips dating to about 305 BC, during China's Warring States period. [2] "Table of Pythagoras" on Napier's bones [3]

  3. Chisanbop - Wikipedia

    en.wikipedia.org/wiki/Chisanbop

    36 represented in chisanbop, where four fingers and a thumb are touching the table and the rest of the digits are raised. The three fingers on the left hand represent 10+10+10 = 30; the thumb and one finger on the right hand represent 5+1=6. Counting from 1 to 20 in Chisanbop. Each finger has a value of one, while the thumb has a value of five.

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  5. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]

  6. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    It requires memorization of the multiplication table for single digits. This is the usual algorithm for multiplying larger numbers by hand in base 10. A person doing long multiplication on paper will write down all the products and then add them together; an abacus-user will sum the products as soon as each one is computed.

  7. Napier's bones - Wikipedia

    en.wikipedia.org/wiki/Napier's_bones

    If the tables are held on single-sided rods, 40 rods are needed in order to multiply 4-digit numbers – since numbers may have repeated digits, four copies of the multiplication table for each of the digits 0 to 9 are needed. If square rods are used, the 40 multiplication tables can be inscribed on 10 rods.

  8. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7. This derives from the fact that a sequence (g k modulo n) always repeats after some value of k, since modulo n produces a finite number of values.

  9. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]