Search results
Results from the WOW.Com Content Network
English: xylem (blue) carries water from the roots upwards phloem (orange) carries products of photosynthesis from the place of their origin (source) to organs where they are needed (roots, storage organs, flowers, fruits – sink); note that e.g. the storage organs may be source and leaves may be sink at the beginning of the growing season
The most distinctive xylem cells are the long tracheary elements that transport water. Tracheids and vessel elements are distinguished by their shape; vessel elements are shorter, and are connected together into long tubes that are called vessels. [6] Xylem also contains two other type of cells: parenchyma and fibers. [7] Xylem can be found:
The cells in vascular tissue are typically long and slender. Since the xylem and phloem function in the conduction of water, minerals, and nutrients throughout the plant, it is not surprising that their form should be similar to pipes. The individual cells of phloem are connected end-to-end, just as the sections of a pipe might be.
The cells of the vascular cambium (F) divide to form phloem on the outside, located beneath the bundle cap (E), and xylem (D) on the inside. Most of the vascular cambium is here in vascular bundles (ovals of phloem and xylem together) but it is starting to join these up as at point F between the bundles.
Xylem is the water-conducting tissue, and the secondary xylem provides the raw material for the forest products industry. [26] Xylem and phloem tissues each play a part in the conduction processes within plants. Sugars are conveyed throughout the plant in the phloem; water and other nutrients pass through the xylem.
Added Companion cells. also aligned the numbers : 00:16, 13 November 2012: 512 × 384 (61 KB) Barakplasma: resized the elements in the image. Added Creative Commons attribution metadata. 00:09, 13 November 2012: 512 × 384 (56 KB) Barakplasma: Centered the image. 00:06, 13 November 2012: 512 × 384 (55 KB) Barakplasma: User created page with ...
Most of these cells transform into xylem and phloem. But certain cells don't transform into xylem and phloem and remain as such. [clarification needed] These cells cut out by the cambium towards the periphery are phloem parenchyma while those towards the pith are xylem parenchyma. Both of these cells together work as secondary medullary rays.
This transport process is called translocation. [2] In trees, the phloem is the innermost layer of the bark, hence the name, derived from the Ancient Greek word φλοιός (phloiós), meaning "bark". [3] [4] The term was introduced by Carl Nägeli in 1858. [5] [6] Different types of phloem can be distinguished. The early phloem formed in the ...