enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    However, the normalised sinc function (blue) has arg min of {−1.43, 1.43}, approximately, because their global minima occur at x = ±1.43, even though the minimum value is the same. [7] In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points ...

  4. Arg max - Wikipedia

    en.wikipedia.org/wiki/Arg_max

    However, the normalised sinc function (blue) has arg min of {−1.43, 1.43}, approximately, because their global minima occur at x = ±1.43, even though the minimum value is the same. [1] In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points ...

  5. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative , if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.

  6. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The value of the function at a critical point is a critical value. [ 1 ] More specifically, when dealing with functions of a real variable , a critical point, also known as a stationary point , is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable ). [ 2 ]

  7. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    Suppose that we wish to find the stationary points of a smooth function : when restricted to the submanifold defined by = , where : is a smooth function for which 0 is a regular value. Let d ⁡ f {\displaystyle \ \operatorname {d} f\ } and d ⁡ g {\displaystyle \ \operatorname {d} g\ } be the exterior derivatives of f {\displaystyle \ f ...

  8. Extreme value theory - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theory

    Extreme value theory or extreme value analysis (EVA) is the study of extremes in statistical distributions. It is widely used in many disciplines, such as structural engineering , finance , economics , earth sciences , traffic prediction, and geological engineering .

  9. Extreme point - Wikipedia

    en.wikipedia.org/wiki/Extreme_point

    In mathematics, an extreme point of a convex set in a real or complex vector space is a point in that does not lie in any open line segment joining two points of . In linear programming problems, an extreme point is also called vertex or corner point of S . {\displaystyle S.} [ 1 ]