Search results
Results from the WOW.Com Content Network
Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
Naive Bayes classifier with multinomial or multivariate Bernoulli event models. The second set of methods includes discriminative models, which attempt to maximize the quality of the output on a training set. Additional terms in the training cost function can easily perform regularization of the final model. Examples of discriminative training ...
The Bayes optimal classifier is a classification technique. It is an ensemble of all the hypotheses in the hypothesis space. On average, no other ensemble can outperform it. [18] The Naive Bayes classifier is a version of this that assumes that the data is conditionally independent on the class and makes the computation more feasible. Each ...
In addition to performing linear classification, SVMs can efficiently perform non-linear classification using the kernel trick, representing the data only through a set of pairwise similarity comparisons between the original data points using a kernel function, which transforms them into coordinates in a higher-dimensional feature space.
Bayesian programming [2] is a formal and concrete implementation of this "robot". Bayesian programming may also be seen as an algebraic formalism to specify graphical models such as, for instance, Bayesian networks, dynamic Bayesian networks, Kalman filters or hidden Markov models.
There are many ways to represent a category of objects, e.g. from shape analysis, bag of words models, or local descriptors such as SIFT, etc. Examples of supervised classifiers are Naive Bayes classifiers, support vector machines, mixtures of Gaussians, and neural networks.