enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of location. The problem is that the arithmetic mean is very sensitive to the inclusion of any outliers; in statistical terminology, the arithmetic mean is not robust.

  3. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.

  4. Tukey's range test - Wikipedia

    en.wikipedia.org/wiki/Tukey's_range_test

    the number of degrees of freedom for each mean ( df = N − k) where N is the total number of observations.) The distribution of q has been tabulated and appears in many textbooks on statistics. In some tables the distribution of q has been tabulated without the factor

  5. Robust measures of scale - Wikipedia

    en.wikipedia.org/wiki/Robust_measures_of_scale

    Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.

  6. Robust statistics - Wikipedia

    en.wikipedia.org/wiki/Robust_statistics

    The outliers in the speed-of-light data have more than just an adverse effect on the mean; the usual estimate of scale is the standard deviation, and this quantity is even more badly affected by outliers because the squares of the deviations from the mean go into the calculation, so the outliers' effects are exacerbated.

  7. Mean - Wikipedia

    en.wikipedia.org/wiki/Mean

    Sometimes, a set of numbers might contain outliers (i.e., data values which are much lower or much higher than the others). Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end and ...

  8. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    The distribution of many statistics can be heavily influenced by outliers, values that are 'way outside' the bulk of the data. A typical strategy to account for, without eliminating altogether, these outlier values is to 'reset' outliers to a specified percentile (or an upper and lower percentile) of the data. For example, a 90% winsorization ...

  9. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set