enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).

  3. Reduced cost - Wikipedia

    en.wikipedia.org/wiki/Reduced_cost

    In linear programming, reduced cost, or opportunity cost, is the amount by which an objective function coefficient would have to improve (so increase for maximization problem, decrease for minimization problem) before it would be possible for a corresponding variable to assume a positive value in the optimal solution.

  4. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.

  5. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    In large linear-programming problems A is typically a sparse matrix and, when the resulting sparsity of B is exploited when maintaining its invertible representation, the revised simplex algorithm is much more efficient than the standard simplex method. Commercial simplex solvers are based on the revised simplex algorithm.

  6. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T. This linear combination gives us an upper bound on the ...

  7. Dantzig–Wolfe decomposition - Wikipedia

    en.wikipedia.org/wiki/Dantzig–Wolfe_decomposition

    The master program incorporates one or all of the new columns generated by the solutions to the subproblems based on those columns' respective ability to improve the original problem's objective. Master program performs x iterations of the simplex algorithm, where x is the number of columns incorporated. If objective is improved, goto step 1.

  8. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    This is an integer linear program. However, we can solve it without the integrality constraints (i.e., drop the last constraint), using standard methods for solving continuous linear programs. While this formulation allows also fractional variable values, in this special case, the LP always has an optimal solution where the variables take ...

  9. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    The linear programming relaxation of an integer program may be solved using any standard linear programming technique. If it happens that, in the optimal solution, all variables have integer values, then it will also be an optimal solution to the original integer program.