Search results
Results from the WOW.Com Content Network
The inverted pendulum was a central component in the design of several early seismometers due to its inherent instability resulting in a measurable response to any disturbance. [8] The inverted pendulum model has been used in some recent personal transporters, such as the two-wheeled self-balancing scooters and single-wheeled electric unicycles.
A double inverted pendulum is the combination of the inverted pendulum and the double pendulum. The double inverted pendulum is unstable, meaning that it will fall down unless it is controlled in some way. The two main methods of controlling a double inverted pendulum are moving the base, as with the inverted pendulum, or by applying a torque ...
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
Close-up of the linear actuator of a back hoe that forms an inverted slider-crank. Linear actuator actuates an inverted slider crank. Slider-crank chain inversion arises when the connecting rod , or coupler, of a slider-crank linkage becomes the ground link, so the slider is connected directly to the crank.
A rotary encoder, also called a shaft encoder, is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals. [1] There are two main types of rotary encoder: absolute and incremental. The output of an absolute encoder indicates the current shaft position, making it an angle ...
Spherical pendulum: angles and velocities. In physics, a spherical pendulum is a higher dimensional analogue of the pendulum. It consists of a mass m moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity.
A circle that passes through the center O of the reference circle inverts to a line not passing through O, but parallel to the tangent to the original circle at O, and vice versa; whereas a line passing through O is inverted into itself (but not pointwise invariant). [5] A circle not passing through O inverts to a circle not passing through O ...
The Duffing equation (or Duffing oscillator), named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators.