enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(functional_analysis)

    In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix.

  3. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  4. Spectrum (topology) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(topology)

    A ring spectrum is a spectrum X such that the diagrams that describe ring axioms in terms of smash products commute "up to homotopy" (corresponds to the identity.) For example, the spectrum of topological K-theory is a ring spectrum. A module spectrum may be defined analogously.

  5. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    The spectrum of T is the set of all complex numbers ζ such that R ζ fails to exist or is unbounded. Often the spectrum of T is denoted by σ(T). The function R ζ for all ζ in ρ(T) (that is, wherever R ζ exists as a bounded operator) is called the resolvent of T. The spectrum of T is therefore the complement of the resolvent set of T in ...

  6. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    A module is called flat if taking the tensor product of it with any exact sequence of R-modules preserves exactness. Torsionless A module is called torsionless if it embeds into its algebraic dual. Simple A simple module S is a module that is not {0} and whose only submodules are {0} and S. Simple modules are sometimes called irreducible. [5 ...

  7. Spectrum of a ring - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_ring

    Given a linear operator T on a finite-dimensional vector space V, one can consider the vector space with operator as a module over the polynomial ring in one variable R = K[T], as in the structure theorem for finitely generated modules over a principal ideal domain. Then the spectrum of K[T] (as a ring) equals the spectrum of T (as an operator).

  8. Decomposition of spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_spectrum...

    The spectrum of T restricted to H ac is called the absolutely continuous spectrum of T, σ ac (T). The spectrum of T restricted to H sc is called its singular spectrum, σ sc (T). The set of eigenvalues of T is called the pure point spectrum of T, σ pp (T). The closure of the eigenvalues is the spectrum of T restricted to H pp.

  9. AOL latest headlines, entertainment, sports, articles for business, health and world news.