Search results
Results from the WOW.Com Content Network
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...
Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are coplanar and either do not intersect or are ...
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
A horizontal line is a straight, flat line that goes from left to right. Given a function f : R → R {\displaystyle f\colon \mathbb {R} \to \mathbb {R} } (i.e. from the real numbers to the real numbers), we can decide if it is injective by looking at horizontal lines that intersect the function's graph .
In the example shown, the blue line represents the horizontal tangent plane at the North pole, the red the horizontal tangent plane at an equatorial point. The two intersect at a right angle. Also, horizontal planes can intersect when they are tangent planes to separated points on the surface of the Earth.
The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...
The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...