Search results
Results from the WOW.Com Content Network
The attack relies on having a "padding oracle" who freely responds to queries about whether a message is correctly padded or not. The information could be directly given, or leaked through a side-channel. The earliest well-known attack that uses a padding oracle is Bleichenbacher's attack of 1998, which attacks RSA with PKCS #1 v1.5 padding. [1]
The attacker can then combine the oracle with a systematic search of the problem space to complete their attack. [1] The padding oracle attack, and compression oracle attacks such as BREACH, are examples of oracle attacks, as was the practice of "crib-dragging" in the cryptanalysis of the Enigma machine. An oracle need not be 100% accurate ...
POODLE (which stands for "Padding Oracle On Downgraded Legacy Encryption") is a security vulnerability which takes advantage of the fallback to SSL 3.0. [ 1 ] [ 2 ] [ 3 ] If attackers successfully exploit this vulnerability, on average, they only need to make 256 SSL 3.0 requests to reveal one byte of encrypted messages.
Padding oracle attacks can be avoided by making sure that an attacker cannot gain knowledge about the removal of the padding bytes. This can be accomplished by verifying a message authentication code (MAC) or digital signature before removal of the padding bytes, or by switching to a streaming mode of operation.
It is a new variant of Serge Vaudenay's padding oracle attack that was previously thought to have been fixed, that uses a timing side-channel attack against the message authentication code (MAC) check stage in the TLS algorithm to break the algorithm in a way that was not fixed by previous attempts to mitigate Vaudenay's attack.
The attack uses the padding as an oracle. [4] [5] PKCS #1 was subsequently updated in the release 2.0 and patches were issued to users wishing to continue using the old version of the standard. [3] However, the vulnerable padding scheme remains in use and has resulted in subsequent attacks:
The zero padding of P in step 4 was important, because it makes the XOR operation's effect on the last B−M bits equivalent to copying the last B−M bits of E n−1 to the end of D n. These are the same bits that were stripped off of E n −1 in step 3 when C n was created.
Note that a one-bit change to the ciphertext causes complete corruption of the corresponding block of plaintext, and inverts the corresponding bit in the following block of plaintext, but the rest of the blocks remain intact. This peculiarity is exploited in different padding oracle attacks, such as POODLE.