Search results
Results from the WOW.Com Content Network
Although std::map is typically implemented using a self-balancing binary search tree, C++11 defines a second map called std::unordered_map, which has the algorithmic characteristics of a hash table. This is a common vendor extension to the Standard Template Library (STL) as well, usually called hash_map , available from such implementations as ...
A map, sometimes referred to as a dictionary, consists of a key/value pair. The key is used to order the sequence, and the value is somehow associated with that key. For example, a map might contain keys representing every unique word in a text and values representing the number of times that word appears in the text.
Unordered map can refer to: Unordered associative containers (C++) Hash table; Associative array This page was last edited on 30 ...
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates, they can be used to store arbitrary elements, such as integers or custom classes.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection.
A concurrent hash table or concurrent hash map is an implementation of hash tables allowing concurrent access by multiple threads using a hash function. [ 1 ] [ 2 ] Concurrent hash tables represent a key concurrent data structure for use in concurrent computing which allow multiple threads to more efficiently cooperate for a computation among ...
Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f . g) z. The implementation of map above on singly linked lists is not tail-recursive, so it may build up a lot of frames on the stack when called with a large list. Many languages ...
Go's foreach loop can be used to loop over an array, slice, string, map, or channel. Using the two-value form gets the index/key (first element) and the value (second element): for index , value := range someCollection { // Do something to index and value }