enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Signed graph - Wikipedia

    en.wikipedia.org/wiki/Signed_graph

    A signed graph is the special kind of gain graph in which the gain group has order 2. The pair (G, B(Σ)) determined by a signed graph Σ is a special kind of biased graph. The sign group has the special property, not shared by larger gain groups, that the edge signs are determined up to switching by the set B(Σ) of balanced cycles. [19]

  3. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    A pair of graphs are said to be cospectral mates if they have the same spectrum, but are non-isomorphic. The smallest pair of cospectral mates is {K 1,4, C 4 ∪ K 1}, comprising the 5-vertex star and the graph union of the 4-vertex cycle and the single-vertex graph [1]. The first example of cospectral graphs was reported by Collatz and ...

  4. Spectrogram - Wikipedia

    en.wikipedia.org/wiki/Spectrogram

    A common format is a graph with two geometric dimensions: one axis represents time, and the other axis represents frequency; a third dimension indicating the amplitude of a particular frequency at a particular time is represented by the intensity or color of each point in the image.

  5. Hofstadter's butterfly - Wikipedia

    en.wikipedia.org/wiki/Hofstadter's_butterfly

    In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter [ 1 ] and is one of the early examples of modern ...

  6. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. Imbalanced weights may undesirably affect the matrix spectrum, leading to the need of normalization — a column/row scaling of the matrix entries ...

  7. Spectral shape analysis - Wikipedia

    en.wikipedia.org/wiki/Spectral_shape_analysis

    Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    The cycle of length 5 is an srg(5, 2, 0, 1). The Petersen graph is an srg(10, 3, 0, 1). The Clebsch graph is an srg(16, 5, 0, 2). The Shrikhande graph is an srg(16, 6, 2, 2) which is not a distance-transitive graph. The n × n square rook's graph, i.e., the line graph of a balanced complete bipartite graph K n,n, is an srg(n 2, 2n − 2, n − ...