Search results
Results from the WOW.Com Content Network
Genetic variance is a concept outlined by the English biologist and statistician Ronald Fisher in his fundamental theorem of natural selection. In his 1930 book The Genetical Theory of Natural Selection, Fisher postulates that the rate of change of biological fitness can be calculated by the genetic variance of the fitness itself. [1]
For a set of numbers {10, 15, 30, 45, 57, 52 63, 72, 81, 93, 102, 105}, if this set is the whole data population for some measurement, then variance is the population variance 932.743 as the sum of the squared deviations about the mean of this set, divided by 12 as the number of the set members.
Biostatistics (also known as biometry) is a branch of statistics that applies statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments , the collection and analysis of data from those experiments and the interpretation of the results.
Fisher's fundamental theorem of natural selection is an idea about genetic variance [1] [2] in population genetics developed by the statistician and evolutionary biologist Ronald Fisher. The proper way of applying the abstract mathematics of the theorem to actual biology has been a matter of some debate, however, it is a true theorem. [3] It ...
[1] The sum of squared deviations is a key component in the calculation of variance, another measure of the spread or dispersion of a data set. Variance is calculated by averaging the squared deviations. Deviation is a fundamental concept in understanding the distribution and variability of data points in statistical analysis. [1]
The expected variance is calculated with the overall mean of the population. Values of D > 1 are considered to suggest aggregation. D( n − 1 ) is distributed as the chi squared variable with n − 1 degrees of freedom where n is the number of units sampled. An alternative test is the C test. [114]
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
This follows from the fact that the variance and mean are independent of the ordering of x. Scale invariance: c v (x) = c v (αx) where α is a real number. [22] Population independence – If {x,x} is the list x appended to itself, then c v ({x,x}) = c v (x). This follows from the fact that the variance and mean both obey this principle.