enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    The basic constructions. All straightedge-and-compass constructions consist of repeated application of five basic constructions using the points, lines and circles that have already been constructed. These are: Creating the line through two points; Creating the circle that contains one point and has a center at another point

  3. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    Thus one only has to find a compass and straightedge construction for n-gons where n is a Fermat prime. The construction for an equilateral triangle is simple and has been known since antiquity; see Equilateral triangle. Constructions for the regular pentagon were described both by Euclid (Elements, ca. 300 BC), and by Ptolemy (Almagest, ca ...

  4. Category:Compass and straightedge constructions - Wikipedia

    en.wikipedia.org/wiki/Category:Compass_and...

    Pages in category "Compass and straightedge constructions" The following 10 pages are in this category, out of 10 total. This list may not reflect recent changes .

  5. Geometric Constructions - Wikipedia

    en.wikipedia.org/wiki/Geometric_Constructions

    The final three chapters go beyond the straightedge and compass to other construction tools. A highly restricted form of construction, the "match-stick geometry" of Thomas Rayner Dawson from the 1930s, uses only unit line segments, which can be placed along each other, intersected, or pivoted around one of their endpoints; despite its limited ...

  6. Mohr–Mascheroni theorem - Wikipedia

    en.wikipedia.org/wiki/Mohr–Mascheroni_theorem

    This can be done with a compass alone. A straightedge is not required for this. #5 - Intersection of two circles. This construction can also be done directly with a compass. #3, #4 - The other constructions. Thus, to prove the theorem, only compass-only constructions for #3 and #4 need to be given.

  7. Compass equivalence theorem - Wikipedia

    en.wikipedia.org/wiki/Compass_equivalence_theorem

    In geometry, the compass equivalence theorem is an important statement in compass and straightedge constructions.The tool advocated by Plato in these constructions is a divider or collapsing compass, that is, a compass that "collapses" whenever it is lifted from a page, so that it may not be directly used to transfer distances.

  8. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1] This proof represented the first progress in regular polygon construction in over 2000 years. [1]

  9. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.