Search results
Results from the WOW.Com Content Network
A Nyquist plot is a parametric plot of a frequency response used in automatic control and signal processing. The most common use of Nyquist plots is for assessing the stability of a system with feedback. In Cartesian coordinates, the real part of the transfer function is plotted on the X-axis while the imaginary part is plotted on the Y-axis ...
Nichols plot of the transfer function 1/s(1+s)(1+2s) along with the modified M and N circles. To use the Hall circles, a plot of M and N circles is done over the Nyquist plot of the open-loop transfer function. The points of the intersection between these graphics give the corresponding value of the closed-loop transfer function.
A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.
In a simple situation, the Warburg element manifests itself in EIS spectra by a line with an angle of 45 degrees in the low frequency region. Figure 2 shows an example of EIS spectrum (presented in the Nyquist plot) simulated using the following parameters: R S = 20 Ω, C dl = 25 μF, R ct = 100 Ω, A W = 300 Ω•s −0.5.
The Nyquist Plot for a sample function () = + + that can be converted to frequency by replacing with (imaginary frequency) and . Created using Python and matplotlib. Created using Python and matplotlib.
The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
The fourth graph depicts the spectral result of sampling at the same rate as the baseband function. The rate was chosen by finding the lowest rate that is an integer sub-multiple of A and also satisfies the baseband Nyquist criterion: f s > 2B. Consequently, the bandpass function has effectively been converted to baseband.