Search results
Results from the WOW.Com Content Network
The neutral value of the pH depends on the temperature and is lower than 7 if the temperature increases above 25 °C. The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [2]
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
The three species all have concentrations equal to 1 / K D at pH = pK 1, for which [Cr] = 4 / K D . [3] The three lines on this diagram meet at that point. Green line Chromate and hydrogen chromate have equal concentrations. Setting [CrO 2− 4] equal to [HCrO − 4] in eq. 1, [H +] = 1 / K 1 , or pH = log K 1. This ...
The pH of a solution of a monoprotic weak acid can be expressed in terms of the extent of dissociation. After rearranging the expression defining the acid dissociation constant, and putting pH = −log 10 [H +], one obtains pH = pK a – log ( [AH]/[A −] ) This is a form of the Henderson-Hasselbalch equation. It can be deduced from this ...
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
In and of themselves, pH indicators are usually weak acids or weak bases. The general reaction scheme of acidic pH indicators in aqueous solutions can be formulated as: HInd (aq) + H 2 O (l) ⇌ H 3 O + (aq) + Ind − (aq) where, "HInd" is the acidic form and "Ind −" is the conjugate base of the indicator. Vice versa for basic pH indicators ...
AOL
A plot of the common logarithm of the reaction rate constant k versus the logarithm of the ionization constant K a for a series of acids (for example a group of substituted phenols or carboxylic acids) gives a straight line with slope α and intercept C. The Brønsted equation is a free-energy relationship.