Search results
Results from the WOW.Com Content Network
Studies of light intensities revealed that the effect was largely on the light-independent steps of the Hill reaction. These observations are explained in terms of a proposed method in which phosphate esterifies during electron transport reactions, reducing ferricyanide, while the rate of electron transport is limited by the rate of ...
Today, flash photolysis facilities are extensively used by researchers to study light-induced processes in organic molecules, polymers, nanoparticles, semiconductors, photosynthesis in plants, signaling, and light-induced conformational changes in biological systems.
Photosynthesis measurement systems are not designed to directly measure the amount of light the leaf absorbs, but analysis of chlorophyll fluorescence, P700- and P515-absorbance, and gas exchange measurements reveal detailed information about, e.g., the photosystems, quantum efficiency and the CO 2 assimilation rates.
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
Studies have actually demonstrated that the two wavelengths together have a synergistic effect on the photosynthetic activity, rather than an additive one. [1] Each photosystem has two parts: a reaction center, where the photochemistry occurs, and an antenna complex, which surrounds the reaction center.
Photosynthesis is the only process that allows the conversion of atmospheric carbon (CO2) to organic (solid) carbon, and this process plays an essential role in climate models. This lead researchers to study the sun-induced chlorophyll fluorescence (i.e., chlorophyll fluorescence that uses the Sun as illumination source; the glow of a plant) as ...
Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]
Photosynthesis is divided into two stages—the light reactions, where water is split to produce oxygen, and the dark reactions, or Calvin cycle, which builds sugar molecules from carbon dioxide. The two phases are linked by the energy carriers adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADP +). [162] [163]