enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic flux - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux

    Magnetic flux. In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber (Wb; in derived units, volt–seconds), and the CGS unit is the maxwell [1].

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as E(x, y ...

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).

  5. Magnetic reluctance - Wikipedia

    en.wikipedia.org/wiki/Magnetic_reluctance

    v. t. e. Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to magnetic flux. It represents the opposition to magnetic flux, and depends on the geometry and composition of an object. Magnetic reluctance in a magnetic circuit is analogous to ...

  6. Magnetic flux quantum - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux_quantum

    Magnetic flux quantum. The magnetic flux, represented by the symbol Φ, threading some contour or loop is defined as the magnetic field B multiplied by the loop area S, i.e. Φ = B ⋅ S. Both B and S can be arbitrary, meaning that the flux Φ can be as well but increments of flux can be quantized. The wave function can be multivalued as it ...

  7. Inductance - Wikipedia

    en.wikipedia.org/wiki/Inductance

    Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current.

  8. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law states that the emf is also given by the rate of change of the magnetic flux: where is the electromotive force (emf) and ΦB is the magnetic flux. The direction of the electromotive force is given by Lenz's law. The laws of induction of electric currents in mathematical form was established by Franz Ernst Neumann in 1845.

  9. Gaussian surface - Wikipedia

    en.wikipedia.org/wiki/Gaussian_surface

    A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. [1] It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field ...