Search results
Results from the WOW.Com Content Network
Graph of tent map function Example of iterating the initial condition x 0 = 0.4 over the tent map with μ = 1.9. In mathematics, the tent map with parameter μ is the real-valued function f μ defined by ():= {,}, the name being due to the tent-like shape of the graph of f μ.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. In simple terms, a convex function graph is shaped like a cup ∪ {\displaystyle \cup } (or a straight line like a linear function), while a concave function 's graph is shaped like a cap ∩ {\displaystyle \cap } .
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...
In mathematics, the support of a real-valued function is the subset of the function domain of elements that are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero.