Search results
Results from the WOW.Com Content Network
Matrix Toolkit Java (MTJ) is an open-source Java software library for performing numerical linear algebra. The library contains a full set of standard linear algebra operations for dense matrices based on BLAS and LAPACK code. Partial set of sparse operations is provided through the Templates project.
EJML is free, written in 100% Java and has been released under an Apache v2.0 license. EJML has three distinct ways to interact with it: 1) Procedural, 2) SimpleMatrix, and 3) Equations. The procedural style provides all capabilities of EJML and almost complete control over matrix creation, speed, and specific algorithms.
jblas is a linear algebra library, created by Mikio Braun, for the Java programming language built upon BLAS and LAPACK. Unlike most other Java linear algebra libraries, jblas is designed to be used with native code through the Java Native Interface and comes with precompiled binaries. When used on one of the targeted architectures, it will ...
Colt was last updated in 2004 (when Java 1.4 was the current release) and its code base has been incorporated into the Parallel Colt code base, which has received more recent development. Colt provides an infrastructure for scalable scientific and technical computing in Java. It is particularly useful in the domain of High Energy Physics at CERN.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Both MATLAB and GNU Octave natively support linear algebra operations such as matrix multiplication, matrix inversion, and the numerical solution of system of linear equations, even using the Moore–Penrose pseudoinverse. [7] [8] The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator.
Initially, these subroutines used hard-coded loops for their low-level operations. For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14]
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)