Search results
Results from the WOW.Com Content Network
In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =
The main effect of A is said to be absent if this expression equals 0. Interaction in a factorial experiment is the lack of additivity between factors, and is also expressed by contrasts. In the 2 × 3 experiment, the contrasts
A natural number is a sociable factorion if it is a periodic point for , where = for a positive integer, and forms a cycle of period . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .
1/1000 d (0.001 d) 1.44 minutes, or 86.4 seconds. Also marketed as a ".beat" by the Swatch corporation. moment: 1/40 solar hour (90 s on average) Medieval unit of time used by astronomers to compute astronomical movements, length varies with the season. [4] Also colloquially refers to a brief period of time. centiday 0.01 d (1 % of a day)
1. Factorial: if n is a positive integer, n! is the product of the first n positive integers, and is read as "n factorial". 2. Double factorial: if n is a positive integer, n!! is the product of all positive integers up to n with the same parity as n, and is read as "the double factorial of n". 3.
It is the period in which Greek and Roman society flourished and wielded great influence throughout Europe, North Africa and the Middle East. Post-classical history – Period of time that immediately followed ancient history. Depending on the continent, the era generally falls between the years AD 200–600 and AD 1200–1500.
For example, the empty products 0! = 1 (the factorial of zero) and x 0 = 1 shorten Taylor series notation (see zero to the power of zero for a discussion of when x = 0). Likewise, if M is an n × n matrix, then M 0 is the n × n identity matrix , reflecting the fact that applying a linear map zero times has the same effect as applying the ...
A perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number.