enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

  3. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group. These are the Bravais lattices in three dimensions:

  4. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only. They [ clarification needed ] represent the maximum symmetry a structure with the given translational symmetry can have.

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The fourteen three-dimensional lattices, classified by lattice system, are shown above. The crystal structure consists of the same group of atoms, the basis, positioned around each and every lattice point. This group of atoms therefore repeats indefinitely in three dimensions according to the arrangement of one of the Bravais lattices.

  6. Monoclinic crystal system - Wikipedia

    en.wikipedia.org/wiki/Monoclinic_crystal_system

    The only monoclinic Bravais lattice in two dimensions is the oblique lattice. Bravais lattice Oblique Pearson symbol: mp Unit cell: See also. Crystal structure;

  7. Space group - Wikipedia

    en.wikipedia.org/wiki/Space_group

    The Bravais lattice of the space group is determined by the lattice system together with the initial letter of its name, which for the non-rhombohedral groups is P, I, F, A or C, standing for the principal, body centered, face centered, A-face centered or C-face centered lattices. There are seven rhombohedral space groups, with initial letter R.

  8. Orthorhombic crystal system - Wikipedia

    en.wikipedia.org/wiki/Orthorhombic_crystal_system

    Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal.

  9. Tetragonal crystal system - Wikipedia

    en.wikipedia.org/wiki/Tetragonal_crystal_system

    Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square base (a by a) and height (c, which is different from a).