Search results
Results from the WOW.Com Content Network
The seven lattice systems and their Bravais lattices in three dimensions In geometry and crystallography , a Bravais lattice , named after Auguste Bravais ( 1850 ), [ 1 ] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
The fourteen three-dimensional lattices, classified by lattice system, are shown above. The crystal structure consists of the same group of atoms, the basis, positioned around each and every lattice point. This group of atoms therefore repeats indefinitely in three dimensions according to the arrangement of one of the Bravais lattices.
These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only. They [ clarification needed ] represent the maximum symmetry a structure with the given translational symmetry can have.
In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group. These are the Bravais lattices in three dimensions:
5 Lattices in two dimensions: detailed discussion. 6 Lattices in three dimensions. ... The 14 lattice types in 3D are called Bravais lattices.
In either case, there are 3 lattice points per unit cell in total and the lattice is non-primitive. The Bravais lattices in the hexagonal crystal family can also be described by rhombohedral axes. [4] The unit cell is a rhombohedron (which gives the name for the rhombohedral lattice). This is a unit cell with parameters a = b = c; α = β = γ ...
The space groups in three dimensions are made from combinations of the 32 crystallographic point groups with the 14 Bravais lattices, each of the latter belonging to one of 7 lattice systems. What this means is that the action of any element of a given space group can be expressed as the action of an element of the appropriate point group ...
The only monoclinic Bravais lattice in two dimensions is the oblique lattice. Bravais lattice Oblique Pearson symbol: mp Unit cell: See also. Crystal structure;